LEARN: How President Obama’s campaign used big data to rally individual voters

 

Though the old guard may have viewed such techniques as a disruptive force in campaigns, they enabled a presidential candidate to view the electorate the way local candidates do: as a collection of people who make up a more perfect union, each of them approachable on his or her terms, their changing levels of support and enthusiasm open to measurement and, thus, to respect.

by Sasha Issenberg - MIT Technology Review

Two years after Barack Obama’s election as president, Democrats suffered their worst defeat in decades. The congressional majorities that had given Obama his legislative successes, reforming the health-insurance and financial markets, were swept away in the midterm elections; control of the House flipped and the Democrats’ lead in the Senate shrank to an ungovernably slim margin. Pundits struggled to explain the rise of the Tea Party. Voters’ disappointment with the Obama agenda was evident as independents broke right and Democrats stayed home. In 2010, the Democratic National Committee failed its first test of the Obama era: it had not kept the Obama coalition together.

But for Democrats, there was bleak consolation in all this: Dan Wagner had seen it coming. When Wagner was hired as the DNC’s targeting director, in January of 2009, he became responsible for collecting voter information and analyzing it to help the committee approach individual voters by direct mail and phone. But he appreciated that the raw material he was feeding into his statistical models amounted to a series of surveys on voters’ attitudes and preferences. He asked the DNC’s technology department to develop software that could turn that information into tables, and he called the result Survey Manager.

It is yet another thing to be right five months before you’re going to lose. As the 2010 midterms approached, Wagner built statistical models for selected Senate races and 74 congressional districts. Starting in June, he began predicting the elections’ outcomes, forecasting the margins of victory with what turned out to be improbable accuracy. But he hadn’t gotten there with traditional polls. He had counted votes one by one. His first clue that the party was in trouble came from thousands of individual survey calls matched to rich statistical profiles in the DNC’s databases. Core Democratic voters were telling the DNC’s callers that they were much less likely to vote than statistical probability suggested. Wagner could also calculate how much the Democrats’ mobilization programs would do to increase turnout among supporters, and in most races he knew it wouldn’t be enough to cover the gap revealing itself in Survey Manager’s tables.
His congressional predictions were off by an average of only 2.5 percent. “That was a proof point for a lot of people who don’t understand the math behind it but understand the value of what that math produces,” says Mitch Stewart, Organizing for America’s director. “Once that first special [election] happened, his word was the gold standard at the DNC.”

The significance of Wagner’s achievement went far beyond his ability to declare winners months before Election Day. His approach amounted to a decisive break with 20th-century tools for tracking public opinion, which revolved around quarantining small samples that could be treated as representative of the whole. Wagner had emerged from a cadre of analysts who thought of voters as individuals and worked to aggregate projections about their opinions and behavior until they revealed a composite picture of everyone. His techniques marked the fulfillment of a new way of thinking, a decade in the making, in which voters were no longer trapped in old political geographies or tethered to traditional demographic categories, such as age or gender, depending on which attributes pollsters asked about or how consumer marketers classified them for commercial purposes. Instead, the electorate could be seen as a collection of individual citizens who could each be measured and assessed on their own terms. Now it was up to a candidate who wanted to lead those people to build a campaign that would interact with them the same way.

After the voters returned Obama to office for a second term, his campaign became celebrated for its use of technology—much of it developed by an unusual team of coders and engineers—that redefined how individuals could use the Web, social media, and smartphones to participate in the political process. A mobile app allowed a canvasser to download and return walk sheets without ever entering a campaign office; a Web platform called Dashboard gamified volunteer activity by ranking the most active supporters; and “targeted sharing” protocols mined an Obama backer’s Facebook network in search of friends the campaign wanted to register, mobilize, or persuade.

But underneath all that were scores describing particular voters: a new political currency that predicted the behavior of individual humans. The campaign didn’t just know who you were; it knew exactly how it could turn you into the type of person it wanted you to be. READ MORE

 

( Image: Narrative Network of US Elections 2012, Appeared in: Automated analysis of the US presidential elections using Big Data and network analysis; S Sudhahar, GA Veltri, N Cristianini; Big Data & Society 2 (1), 1-28, 2015 )